FURTHER STUDIES ON THE EXTENDED HAMMETT EQUATION COMPRISING THE HYDROPHOBIC CONSTANT: REACTIVITY DATA FOR BENZOIC ACIDS, ARYLACETIC ACIDS, β-ARYLPROPIONIC ACIDS, trans- AND cis-CINNAMIC ACIDS, METHYL BENZOATES; DISSOCIATION CONSTANTS, DDM REACTION AND ALKALINE HYDROLYSIS IN VARIOUS WATER-ORGANIC SOLVENT MIXTURES*

Anthonius J. Hoefnagel and Bartholomeus M. Wepster
Laboratory of Organic Chemistry, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands

Dedicated to Professor Otto Exner on the occasion of his 65th birthday.

The extended Hammett equation $\Delta=\Omega \sigma+h \pi$ comprising the hydrophobic constant π is found to be effective in the title compounds and reactivitiés in various solvent mixtures. In $32 \mathrm{vol} . \%$ tert-butanol-water h_{m} decreases in the order ArCOOMe (-0.25), cis-ArCH $=\mathrm{CHCOOH}(-0.18)$, ArCOOH and $\mathrm{ArCH}_{2} \mathrm{COOH}(-0 \cdot 16), \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathbf{C O O H}$ and trans $-\mathrm{ArCH}=\mathbf{C H C O O H}$ (-0.07). For ArCOOH, mixtures like $40-60 \%$ methanol, 50% ethanol, 50% acetone and 50% dioxane give similar h_{m} values of circa -0.05 . For $\mathrm{ArCH}_{2} \mathrm{COOH}$ the effects of 3 -iodo and 4 -iodo substituents are acid-weakening in 32% tert-butanol. The consequences of the $h \pi$ term for ϱ, σ, and the averaging of σ values, are discussed.

Recently ${ }^{1}$, we have drawn attention to the lack of precision of the Hammett equation (1) in several water-organic solvent mixtures for several systems; the main body of evidence

$$
\begin{equation*}
\log K-\log K^{0} \equiv \Delta=\varrho \sigma \tag{1}
\end{equation*}
$$

consisted of pK values of benzoic acids in aqueous tert-butanol ($\mathrm{TB} / \mathrm{H}_{2} \mathrm{O}$) and aqueous ethanol ($\mathrm{E} / \mathrm{H}_{2} \mathrm{O}$). Convincingly better statistical data were obtained with the extended Hammett equations (2)-(4), comprising Hansch's ${ }^{2}$ hydrophobic,

$$
\begin{gather*}
\Delta=\varrho \sigma+h \pi \tag{2}\\
\Delta_{m}=\varrho_{m} \sigma_{m}+h_{m} \pi \tag{3}\\
\Delta_{p}=\varrho_{m} \sigma_{p}+h_{p} \pi \tag{4}
\end{gather*}
$$

[^0]constant π. In our most marked example, relating to a set of 24 compounds of the (meta-)ArCOOH series in 32TB (32 vol. \% TB, 8 mole \%), Eq. (1) and (3) give, respectively, standard deviations $s 0.170$ and 0.037 , correlation coefficients $R 0.961$ and 0.998 , with h in Eq. (3) -0.161 ± 0.008. In 50E ($22 \mathrm{~mole} \%$) the same set gives, respectively, $s 0.059$ and $0.028, R 0.995$ and 0.999 , with $h-0.051 \pm 0.006$. Maximum values of h occur at about 32 TB and 40 E ; in 85 E Eq. (1) is followed closely with s 0.047 and $R 0.997$, and Eq. (3) does not give any improvement. Furthermore, if the substituents in the set are limited to those having π values within a narrow range (0.27 to -0.73 , the "inside" set ${ }^{1}, n 10$) Eq. (1) performs well even in 32 TB with $s 0.057, R 0.996$, although Eq. (3) is better, with $s 0.034, R 0.999$, but imprecise h $-0 \cdot 181 \pm 0 \cdot 045$. Apparently, one of the criteria for a substituent to be "well behaved" is that it has a small π value.

RESULTS AND DISCUSSION

In the present paper we give pK values of ArCOOH in $\mathrm{E} / \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{TB} / \mathrm{H}_{2} \mathrm{O}$ in addition to those given earlier ${ }^{1,3,4,5}$, and data in methanol-water $\left(\mathrm{M} / \mathrm{H}_{2} \mathrm{O}\right)$, acetone-water $\left(\mathrm{A} / \mathrm{H}_{2} \mathrm{O}\right)$ and dioxane-water $\left(\mathrm{D} / \mathrm{H}_{2} \mathrm{O}\right)$. Additional data are also given of pK values of $\mathrm{ArCH}_{2} \mathrm{COOH}^{4,6}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}^{4,7}$ and cis- and trans- $\mathrm{ArCH}=\mathrm{CHCOOH}^{4}$. Included are data on the reaction of ArCOOH with diazodiphenylmethane (DDM), and on the alkaline hydrolysis of ArCOOMe.

These data have been collected in Tables I-IV. Table V lists the regression data for Eq. (1) and Eq. (3), arranged in pairs to facilitate comparison. As in our previous paper ${ }^{1}$ the conclusion is that Eq. (3) performs well and also when Eq. (1) fails.

The attentive reader will note that in most of the series the number of data points, n, is too small to comply with the requirements of proper statistics ${ }^{8,9}$. Nevertheless, we give the complete set of statistical data because this provides the simplest way of showing the quality of Eq. (1) and Eq. (3). Again, as far as possible, the sets include substituents with high and low $\sigma_{\mathrm{m}}\left(\mathrm{H} 0, \mathrm{I} 0.352, \mathrm{NO}_{2} 0.710\right)$ and high and low $\pi\left(\mathrm{H} \mathrm{O}, \mathrm{NO}_{2}-0 \cdot 28\right.$, I $1 \cdot 12$, t-Bu 1.98). An experimental ratio $\Delta-3-\mathrm{I} / \Delta-3-\mathrm{NO}_{2}$ different from 0.5 and a ratio $\Delta-3-\mathrm{t}-\mathrm{Bu} / \Delta-3-\mathrm{NO}_{2}$ different from $-0 \cdot 1$ guarantees that Eq. (1) is not satisfactory. A good fit with Eq. (3) then gives at least a provisional confirmation that the $h \pi$ term is a valuable extension.

With this in mind we first list the various sets in order of decreasing h_{m} in 32 TB (Table VI).
The near-equality of h for ArCOOH and $\mathrm{ArCH}_{2} \mathrm{COOH}$ is well-founded; near--equality also holds for ester hydrolysis in $56 \mathrm{wt} . \% \mathrm{~A}$ (ArCOOMe, $h-0.11$; $\mathrm{ArCH}_{2} \mathrm{COOEt}, h-0 \cdot 10$, ref. ${ }^{1}$). The position of ArCOOMe above ArCOOH is supported by data in $50-60 \mathrm{~A}$ ($\mathrm{ArCOOMe}, h-0 \cdot 11$; $\mathrm{ArCOOH}, h-0.06$). The high value for cis- $\mathrm{ArCH}=\mathrm{CHCOOH}$ certainly needs confirmation; $\Delta-3,5-\mathrm{di}-\mathrm{t}-\mathrm{Bu}-0.76$ versus $\Delta-3-\mathrm{NO}_{2} 0 \cdot 37 \mathrm{in} 32 \mathrm{~TB}$ is rather conspicuous, though, and indicates that only

Table I
Benzoic acids: Thermodynamic $\mathrm{p} K$ values of the parent, and substituent effects expressed as $100\left(\mathrm{p} K^{\mathrm{o}}-\mathrm{pK}\right)$ in various solvents, at $25^{\circ} \mathrm{C}^{a}$

40M (4.96)					
$3-\mathrm{NO}_{2} 90$ 3-I	40	3,5-di-t-Bu	-34	$3-\mathrm{CEt}_{3}$	-28
60M (5.49)					
$3-\mathrm{NO}_{2} 99$ 3-I	41	$3.5-\mathrm{di}-\mathrm{t}-\mathrm{Bu}$	-35	$3-\mathrm{CEt}_{3}$	-27
80M (6.22)					
$3-\mathrm{NO}_{2} 103$ 3-I	45	3,5-di-t-Bu	-28	$3-\mathrm{CEt}_{3}$	-21
10E (4.37)					
$3-\mathrm{NHCONH}_{2}{ }^{\text {b }}$	11	4-COOMe	47	$4-\mathrm{OH}$	-39
3,5-diOMe	22	4-NHAc	-3	$4-\mathrm{SO}_{2} \mathrm{Me}$	75
$50 \mathrm{E}(5.48)$					
3-neoPent	-30	3,5-diBr	102	4-COOMe	63
3-t-Pent	-30	4-neoPent	-24	$4-\mathrm{NEt}_{2}$	$-107{ }^{\text {d }}$
$3-\mathrm{MeC}=\mathrm{CMe}_{2}$	-22	4-t-Pent	-25	4-Pyrrolidin-1-yl	$-104{ }^{\text {d }}$
$3-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-33	4-Hept	-23	4-Piperidin-1-yl	$-62^{\text {d }}$
$3-\mathrm{CO}-\mathrm{t}-\mathrm{Bu}$	38	4-cycloHex	-21	4-NHFo	-2
$3-\mathrm{NH}_{2}$	-8^{c}	4-bicyclo[2.2.2]		4-NHAc	-7
$3-\mathrm{NMe}_{2}$	-14^{c}	Octan-1-yl	-20	$4-\mathrm{N}=\mathrm{NPh}$	39
$3-\mathrm{NHCONH}_{2}{ }^{\text {b }}$	14	4- $\mathrm{CH}_{2} \mathrm{Ph}$	-14	$4-\mathrm{OH}$	-53
$3-\mathrm{O}-\mathrm{Octyl}$	-4	$4-\mathrm{CH}=\mathrm{CH}_{2}$	-3	4-OEt	-34
3,5-diEt	-35	$4-\mathrm{MeC}=\mathrm{CME}_{2}$	-18	$4-\mathrm{OPh}$	-2
3,5-di-iPr	-41	4-Ph	3	$4-\mathrm{SO}_{2} \mathrm{Me}$	109
3,5-diOMe	22	$4-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-37		
3,5-diSiMe 3	-40	4-CO-t-Bu	51		
75E (6.29)					
3-neoPent	-20	3,5-diBr	122	4-Piperidin-1-yl	-69^{e}
3-t-Pent	-15	4-neoPent	-15	4-NHNH2	-75
$3-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-27	4-t-Pent	-16	4-NHFo	-2
$3-\mathrm{CO}-\mathrm{t}-\mathrm{Bu}$	50	4-Hept	-19	4-NHAc	-11
$3-\mathrm{NH}_{2}$	-12^{e}	4-cycloHex	-17	$4-\mathrm{N}=\mathrm{NPh}$	49
$3-\mathrm{NMe}_{2}$	-19^{e}	$4-\mathrm{CH}_{2} \mathrm{Ph}$	-8	$4-\mathrm{OH}$	-60
3-O-Octyl	7	4-Ph	8	4-OEt	-34
3,5-diEt	-28	$4-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-31	4-OPh	-2
3,5-di-iPr	-30	4-CO-t-Bu	62	$4-\mathrm{SO}_{2} \mathrm{Me}$	116
3,5-diOMe	24	4-COOMe	73	3,5-diMe-4-NO ${ }_{2}$	91

[^1]TAble I
(Continued)

85E (6.77)

3-neoPent	-16	$3-\mathrm{NH}_{2}$	-20	4-neoPent	-16
3-t-Pent	-19	$3-\mathrm{NMe}_{2}$	-24	$4-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-34
$3-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-26	$3-\mathrm{NHCONH}_{2}{ }^{\text {b }}$	9	4-CO-t-Bu	62
3-CO-t-Bu	53	$3-\mathrm{OH}$	-6	4-Piperidin-1-yl	-72^{c}
		3-O-Octyl	0		

22TB (4.78)

3-neoPent	-47	$3-\mathrm{NHCONH}_{2}{ }^{b}$	13	$4-\mathrm{Ph}$	-13
$3-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-62	$3,5-\mathrm{diEt}$	-51	$4-\mathrm{CO}-\mathrm{t}-\mathrm{Bu}$	38
$3-\mathrm{CO}-\mathrm{t}-\mathrm{Bu}$	25	$3,5-\mathrm{di}-\mathrm{iPr}$	-60	$4-\mathrm{OH}$	-43

32TB (5.28)

3-neoPent	-54	3,5-diSiMe ${ }_{3}$	-85	$4-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$	-63
3-t-Pent	-61	4-neoPent	-43	4-CO-t-Bu	43
$3-\mathrm{CH}_{2} \mathrm{SiMc}_{3}$	-67	4-t-Pent	-46	4-Piperidin-1-yl	-74^{f}
3-CO-t-Bu	27	4-Hept	-48	$4-\mathrm{OH}$	-46
$3-\mathrm{NHCONH}_{2}{ }^{\text {b }}$	21	4-cycloHex	-45	4-OPh	-27
3-O-Octyl	-33	4-bicyclo[2.2.2]		$3,5-\mathrm{diMe}-4-\mathrm{NO}_{2}$	68
3,5-diEt	-61	Octan-1-yl	-51	$3,5-\mathrm{di}-\mathrm{t}-\mathrm{Bu}-4-\mathrm{NO}_{2}$	21
3,5-di-iPr	-71	$4-\mathrm{CH}_{2} \mathrm{Ph}$	-29	$4-\mathrm{i}-\mathrm{Bu}-3-\mathrm{NO}_{2}$	69
3,5-diOMe	15	$4-\mathrm{Ph}$	-14		

10A (4-46)

Table I
(Continued)

	$50 \mathrm{D}(6 \cdot 32)$					
	-15	$3-\mathrm{F}$	48	$3-\mathrm{I}$	43	
$3-\mathrm{Me}$	-25	$3-\mathrm{Cl}$	49	$3-\mathrm{OH}$	-1	
$3-\mathrm{t}-\mathrm{Bu}$	105	$3-\mathrm{Br}$	49			
$3-\mathrm{NO}_{2}$						

${ }^{\text {a }} 40 \mathrm{M}$ (4.96), etc.: solvent 40 ml absolute methanol in 100 ml final solution, and (in parentheses) $\mathrm{p} K$ of benzoic acid, E ethanol, TB t -butanol, A acetone, D dioxane; ${ }^{b}$ additional data for 3-$-\mathrm{NHCONH}_{2}$ (solvent, 100د): 10TB 8, 40TB 21, 50TB 22, 60TB 22, $75 \mathrm{~TB} 20,90 \mathrm{~TB} 16,80 \mathrm{Methyl}$ Cellosolve $6 ;{ }^{\mathrm{c}}$ correction for tautomeric equilibrium estimated (cf. ref. ${ }^{5}$), measured $\mathrm{p} K_{2}: 3-\mathrm{NH}_{2}$ $5 \cdot 59,3-\mathrm{NMe}_{2} 5 \cdot 66 ;{ }^{d}$ ref..$^{5} ;{ }^{e}$ no correction needed for tautomerism (see ref. ${ }^{5}$); ${ }^{f}$ correction for tautomerism (probably less than 0.03 , cf. ref. ${ }^{5}$) not applied.
10% of the effect of $3,5-\mathrm{di}-\mathrm{t}-\mathrm{Bu}$ is covered by $\varrho \sigma$. Comparison with ArCOOH and trans- $\mathrm{ArCH}=\mathrm{CHCOOH}$ gives the stronger indications that distance is one of the factors determining h; the h value for $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ then is in harmony with preponderance of the extended form. The value of h for the DDM reaction possibly reflects a considerable ionic character of the transition state.

As to other solvent mixtures our data tend to show that in $40-60 \mathrm{M}, 50 \mathrm{E}, 50 \mathrm{~A}$ and 50D the h values are similar, around -0.05 , for $\mathrm{ArCOOH}, \mathrm{ArCH}_{2} \mathrm{COOH}$ and cis- $\mathrm{ArCH}=\mathrm{CHCOOH}$; it should be born in mind that they do not necessarily represent the maximum values in the several mixtures. In mixtures like $10 \mathrm{E}, 10 \mathrm{~A}$, 85 E (and usually 75 E) Eq. (1) is followed closely and h is indistinguishable from zero. In this connection we note that with $h-0.03$ and $\pi 1.98(\mathrm{t}-\mathrm{Bu})$ the $h \pi$ term, $0.06 \log$ units, may be close to or even within the sum of experimental error and the intrinsic deviations of Eq. (1). The (small) values of h for $\mathrm{ArCH}_{2} \mathrm{COOH}$ in 80 MCS and 30DMSO are somewhat surprising in that we found no deviations from Eq. (1) for ArCOOH in these mixtures ${ }^{1}$. The available data in water do not disclose irregularities, except cis $-\mathrm{ArCH}=\mathrm{CHCOOH}$, but here, as in the other solvents, the data are remarkably scarce and the substituents are not suitable for the purpose of testing Eq. (3).

Our new data for ArCOOH give extensive confirmation for the failure of Eq. (1) in several solvents. We select from 32TB the Δ values*: 3-O-Octyl $-0 \cdot 33$; 3,5-- diSiMe $_{3}-0.85(50 \mathrm{E}-0.40)$; 4-Alkyl, increasing approximately linearly with

[^2]Table II
Arylacetic acids: Thermodynamic pK values of the parent and substituent effects expressed as $100\left(\mathrm{p} K^{\circ}-\mathrm{p} K\right)$ in various solvents, at $25^{\circ} \mathrm{C}^{a}$

$\mathrm{H}_{2} \mathrm{O}(4 \cdot 31)$					
3-t-Bu	$-7^{\text {b }}$	$3-\mathrm{CF}_{3} 15$	$3-\mathrm{OH} 2$	4-t-Bu	$-6^{\text {b }}$
4-CN	34	4-NHAc 4	$4-\mathrm{OH}-9$		
40M (5.06)					
$3-\mathrm{NO}_{2}$	39	3-I	14	3,5-di-t-Bu	-22
5E(4.42)					
$3-t-B u$	-8	4-t-Bu	-7		
10E (4.50)					
$3-\mathrm{t}-\mathrm{Bu}$	-9	$3-\mathrm{CH}_{2} \mathrm{OH}$	3	3-I	14
$3,5-\mathrm{diNO}_{2}$	69^{c}	$3-\mathrm{CF}_{3}$	19	$4-t-B u$	-8
50E (5.47)					
$3-\mathrm{CH}_{2} \mathrm{OH}$	9	$3,5-\mathrm{diNO}_{2}$	$97^{\text {c }}$	$3-\mathrm{CF}_{3}$	24
75 E (6.20)					
$3-\mathrm{CH}_{2} \mathrm{OH}$	5	$3,5-\mathrm{diNO}_{2}$	$113{ }^{\text {c }}$	$3-\mathrm{CF}_{3}$	34
85E (6.72)					
3-t-Bu	-9	$3-\mathrm{NO}_{2}$	62	3,5-di-t-Bu	-17
$3,5-\mathrm{diNO}_{2}$	122	4-Me	-7	4-t-Bu	-6
22TB (4.76)					
3-t-Bu	-26				
32TB (5.21)					
3-Me	-19	3-t-Bu	-44	$3-\mathrm{CH}_{2} \mathrm{OH}$	14
$3-\mathrm{NO}_{2}$	42	3-F	10	$3-\mathrm{Cl}$	4
$3-\mathrm{Br}$	1	3-I	-4	3,5-diMe	-36
3,5-di-t-Bu	-74	$3,5-\mathrm{diNO}_{2}$	90	$3-\mathrm{OH}$	7
3-OMe	1	4-Me	-18	4-t-Bu	-40
4-NHAc	6	$4-\mathrm{NO}_{2}$	54	4-OH	-7
4-OMe	-9	4-F	5	4-I	-1
80MCS (7-25)					
3-t-Bu	-11	$3-\mathrm{NO}_{2}$	59	3,5-di-t-Bu	-21
4-Me	-9	$4-\mathrm{t}-\mathrm{Bu}$	-7	4-F	18
4-I	28				

Table II
(Continued)

$10 \mathrm{~A}(4 \cdot 60)$					
$3-\mathrm{NO}_{2}$	37	$4-\mathrm{NO}_{2}$	47		
		$30 \mathrm{DMSO}(4 \cdot 88)$			
$3-\mathrm{t}-\mathrm{Bu}$	-12	$3-\mathrm{NO}_{2}$	41	$3,5-\mathrm{di}-\mathrm{t}-\mathrm{Bu}$	-23
$4-\mathrm{Me}$	-8	$4-\mathrm{t}-\mathrm{Bu}$	-10		

${ }^{a} \mathrm{H}_{2} \mathrm{O}(4 \cdot 31)$, etc.: solvent and pK parent. MCS methyl cellosolve, DMSO dimethyl sulfoxide (see also Table I, note ${ }^{a}$); ${ }^{b}$ extrapolated from data in 10 E and 5 E ; ${ }^{c}$ ref. 4.
increasing number of carbon atoms (but almost constant in 75E), of which 4-n-heptyl -0.48, 4-bicyclo[2.2.2] octan-1-yl $-0.51,4-\mathrm{CEt}_{3}-0.57$; 4-Ph $-0.14 ; 4-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ $-0.63(50 \mathrm{E}-0.37) ; 3-\mathrm{CH}_{2} \mathrm{SiMe}_{3}-0.67(50 \mathrm{E}-0.33)$. The data for $\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ call for a reinterpretation on the present basis of the work, in $50 \% \mathrm{E}$, by Eaborn and Parker ${ }^{10}$. We confirm Bowden and Shaw's ${ }^{11}$ observation (in $\mathrm{H}_{2} \mathrm{O}$ and 80% MCS) that $\Delta-4-\mathrm{CO}-\mathrm{t}-\mathrm{Bu}$ is relatively small; however, their interpretation on the basis of steric inhibition of resonance is put in doubt by our finding the same for $\Delta-3-\mathrm{CO}-\mathrm{t}-\mathrm{Bu}$.

Table III

β-Arylpropionic acids, trans- and cis-cinnamic acids ArXXCOOH: Thermodynamic pK values of the parent and substituent effects expressed as $100\left(\mathrm{p} K^{\circ}-\mathrm{pK}\right)$ in various solvent mixtures, at $25^{\circ} \mathrm{C}$

Substituent	XX			
	$\mathrm{CH}_{2}-\mathrm{CH}_{2}{ }^{\text {a }}$	$\underset{\text { trans }}{\mathrm{CH}=\mathrm{CH}^{a}}$	$\begin{gathered} \mathrm{CH}=\mathrm{CH}^{a} \\ \text { cis } \end{gathered}$	$\underset{\text { cis }}{\mathrm{CH}=\mathrm{CH}^{b}}$
H	$5 \cdot 58$	$5 \cdot 40$	$4 \cdot 94$	$4 \cdot 67$
3-Me	-11	-11		
$3-\mathrm{NO}_{2}$	21	50	37	38
$3-\mathrm{Cl}$	3	21	6	
3,5-diMe	-19	-23		
3,5-di-t-Bu	-35	-40	-76	-29
$4-\mathrm{NO}_{2}$	34			

[^3]Collect. Czech. Chem. Commun. (Vol. 55) (1990)

The $\mathrm{ArCH}_{2} \mathrm{COOH}$ series is worthy of special comment. Due to the lower ϱ and equal h the deviations from Eq. (1) are much more pronounced than for ArCOOH. Thus, in 32 TB , with $n 12$, Eq. (1) has $R 0.90$; with the 8 "outside" substituents $(0.27<\pi<-0.73) R$ is as low as 0.74 (Eq. (3), $R 0.997$). Again, with $\Delta-3-\mathrm{NO}_{2}$ $0 \cdot 42, \Delta-3-\mathrm{t}-\mathrm{Bu}$ is $-0 \cdot 44$. The behaviour of the meta halogens is quite striking: F, Cl, Br , I have $\Delta 0.10,0.04,0.01$ and -0.04 , respectively.

In the ArCOOH series we found $h_{p}=0.76 h_{m}$ by applying Eq. (5) to data points for 15 substituents in meta

$$
\begin{equation*}
\Delta(32 \mathrm{~TB})=\varrho \Delta(50 \mathrm{E})+h_{m} \pi+h_{p} \pi \tag{5}
\end{equation*}
$$

position, the same 15 substituents in para position, and the parent ($n 31$). The corresponding procedure for $\mathrm{ArCH}_{2} \mathrm{COOH}$ ($n 13$) gives the (relative) values h_{m} -0.133 ± 0.007 and $h_{p}-0.138 \pm 0.007^{*}$, so that we have no reason to distinguish between h_{m} and h_{p} in this series.

@ Values

The ϱ values obtained here and in the literature through Eq. (1) are usually close to the "true" ϱ values of Eq. (3). This can be largely traced back to: (a) most of the commonly used substituents have π in a small range; (b) $3-\mathrm{NO}_{2}$ (or 4- NO_{2}) is included; (c) many common substituents have σ about half that of $\mathrm{NO}_{2}{ }^{* *}$. Factor (a) can be illustrated by listing the 10 "inside" groups ($0.27>\pi>-0.73$) out of the 24 groups of ref. ${ }^{1}: \mathrm{H}, \mathrm{CMe}_{2} \mathrm{OH}, \mathrm{CHO}, \mathrm{COMe}, \mathrm{COOMe}, \mathrm{CN}, \mathrm{NO}_{2}, \mathrm{OMe}, \mathrm{OEt}, \mathrm{F}$. Factor (c) can be illustrated by noting that in the σ_{m} range $0.33-0.44$ are found: $\mathrm{CHO}, \mathrm{COMe}, \mathrm{COOMe}, \mathrm{CF}_{3}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}$, I. If H and $3-\mathrm{NO}_{2}$ are present in the set, the last series contributes little to ϱ whatever the size of the $h \pi$ term; the least-square slope is dominated by the points for H and NO_{2}, and, since π for $\mathrm{NO}_{2},-0 \cdot 28$, is small, this slope is also close to that of Eq. (3). Thus, for $\mathrm{ArCH}_{2} \mathrm{COOH}$ in 32 TB the set $\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NO}_{2}$, gives R as low as 0.76 but $\varrho 0.57$ is close to $\Delta-3-\mathrm{NO}_{2} /$ $\mid \sigma-3-\mathrm{NO}_{2} 0 \cdot 59$, and to $\varrho 0.62$ from Eq. (3) with $n 12$.

Strongly different slopes can be conjured up by a provocative choice of substituents. In the same $\mathrm{ArCH}_{2} \mathrm{COOH}$ series the set $\mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{t}-\mathrm{Bu}$ and di-t- Bu gives $\varrho 4.4$ in $32 \mathrm{~TB}(R 0.98)$ and 2.0 in $50 \mathrm{E}(R 0.99)$; the pair H / I gives $\varrho-0.1$. By way of counterpoint we note that h is approximated here by $\Delta-3-\mathrm{t}-\mathrm{Bu} / \pi-3-\mathrm{t}-\mathrm{Bu}$, yielding $-0 \cdot 22$, or by $\Delta-3,5-\mathrm{di}-\mathrm{t}-\mathrm{Bu} / \pi-3,5-\mathrm{di}-\mathrm{t}-\mathrm{Bu}$, yielding $-0 \cdot 19$.

[^4]
σ Values

Mixed solvents have often been introduced in order to avoid solubility problems with water as the solvent, even if this were the solvent of choice. The availability of pure ethanol, its likeness to water, and the practical and numerical attraction of the $1: 1$ ratio, then led to " 50% ethanol"* approaching the status of (secondary) standard solvent and σ values derived from data in this mixture as (secondary) standard σ values. Ironically, the choice of 50% ethanol has been about the worst possible in the $\mathrm{E} / \mathrm{H}_{2} \mathrm{O}$ range. For 3 -t- Bu the $h \pi$ term represents 0.07σ-units in the ArCOOH series and 0.16σ-units in the $\mathrm{ArCH}_{2} \mathrm{COOH}$ series.

The above touches on the question of obtaining "best σ values" by any of the averaging procedures. It is clear that the indiscriminate use of data from mixed solvents has to be discouraged. This holds the more if systems with positive h are included ${ }^{1}\left(\mathrm{ArNH}_{3}^{+}, \mathrm{ArCH}_{2} \mathrm{NH}_{3}^{+}\right)$, since the deviations in opposite direction enlarge the total ranges of σ values and the standard deviations of the averages.

Table IV
Rates of benzoic acids reactions with DDM, and methyl benzoates alkaline hydrolyses in various solvent mixtures, at $25^{\circ} \mathrm{C}$, expressed as $100\left(\log k-\log k^{\circ}\right)$

Substituent	$\mathrm{ArCOOH}+\mathrm{DDM}^{a}$			$\mathrm{ArCOOMe}+\mathrm{OH}^{-b}$		
	75E	32 TB	50 TB	$\begin{gathered} 56 \% \mathrm{~A}^{c} \\ \mathrm{w} / \mathrm{w} \end{gathered}$	$\begin{gathered} 56 \% \mathrm{~A}^{d} \\ \mathrm{w} / \mathrm{w} \end{gathered}$	32 TB
H	$5 \cdot 25$	$20 \cdot 1$	$3 \cdot 81$	9.01	$10 \cdot 4$	$10 \cdot 0$
3-Me				-25	-21	
3-t-Bu					-38	-73
$3-\mathrm{NO}_{2}$	64	69	73	159	159	143
$3-\mathrm{Cl}$	29	28			79	47
$3-\mathrm{Br}$				72		
3-I				65		
3,5-diMe					-44	
$3,5-\mathrm{di}-\mathrm{t}-\mathrm{Bu}$	-20	-51	-39			-127
$4-\mathrm{NO}_{2}$	68			184	184	

$$
{ }^{a} 10^{5} k_{2}\left(1 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}\right) ;^{b} 10^{3} k_{2}\left(1 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right) ;^{c} \text { see ref. }{ }^{45} ;{ }^{d} \text { ref. }^{46} .
$$

* Many different 50% ethanol mixtures can be distinguished: $50 \mathrm{ml}+50 \mathrm{ml}, 50 \mathrm{~g}+50 \mathrm{~g}$ $(w / w), 50 \mathrm{ml}$ ethanol $\rightarrow 100 \mathrm{ml}$ (with absolute ethanol our 50 E), 50 ml water $\rightarrow 100 \mathrm{ml}$, each of these with 100% ethanol or " 96% " ethanol. Our impression is that all or most of these have been actually used.

Table V
Regression data pertaining to Eqs (1) and (3): dissociation constants, DDM reaction, alkaline ester hydrolysis ${ }^{a}$

Solvent	n	$e \pm s_{e}$	s	R	int.	F	$h_{m} \pm s_{h}$
ArCOOH							
40M	4	1.393 ± 0.111	0.074	0.9937	-0.081	156	
		1.254 ± 0.010	0.005	1.0000	-0.001	15620	-0.041 ± 0.002
60M	4	1.504 ± 0.115	0.076	0.9942	-0.084	172	
		1.365 ± 0.052	0.026	0.9997	-0.003	736	-0.041 ± 0.010
80M	4	1.499 ± 0.066	0.044	0.9980	-0.046	508	
		1.427 ± 0.061	0.030	0.9995	-0.003	545	-0.022 ± 0.012
50E	24^{b}	1.571 ± 0.035	0.059	0.9946	-0.069	2017	
		1.484 ± 0.019	0.028	0.9989	-0.030	4675	-0.051 ± 0.006
50E	$22^{\text {c }}$	1.582 ± 0.037	0.045	0.9944	-0.060	1779	
		1.506 ± 0.026	0.027	0.9980	-0.034	2375	-0.044 ± 0.008
32TB	$24^{\text {b }}$	1.652 ± 0.101	0.170	0.9612	-0.194	267	
		1.375 ± 0.026	0.037	0.9983	-0.071	3034	-0.161 ± 0.008
32TB	$22^{\text {c }}$	1.630 ± 0.113	0.134	0.9555	-0.161	210	
		1.356 ± 0.037	0.038	0.9967	-0.067	1418	-0.159 ± 0.010
10A	11	1.093 ± 0.006	0.009	0.9998	0.007	28650	
		1.097 ± 0.008	0.009	0.9999	0.004	13870	0.004 ± 0.005
50A	12	1.558 ± 0.052	0.073	0.9946	-0.063	916	
		1.467 ± 0.033	0.039	0.9986	-0.001	1601	-0.058 ± 0.011
26.5D	$7{ }^{\text {d }}$	1.259 ± 0.046	0.030	0.9966	-0.031	740	
		1.243 ± 0.016	0.010	0.9997	-0.003	3108	-0.052 ± 0.008
43.5D	$7{ }^{\text {d }}$	1.378 ± 0.055	0.035	0.9961	-0.042	631	
		1.361 ± 0.032	0.021	0.9989	-0.012	933	-0.055 ± 0.017
73.5D	$7{ }^{\text {d }}$	1.503 ± 0.046	0.030	0.9976	-0.033	1051	
		1.488 ± 0.018	0.012	0.9997	-0.005	3512	-0.051 ± 0.009
50D	8	1.540 ± 0.071	0.052	0.9936	-0.072	467	
		1.453 ± 0.010	0.007	0.9999	-0.003	14820	-0.075 ± 0.004

$\mathrm{ArCH}_{2} \mathbf{C O O H}$

$\mathbf{H}_{2} \mathrm{O}$	5^{e}	0.494 ± 0.016	0.010	0.9984	-0.012	925	
		0.489 ± 0.009	0.005	0.9997	-0.004	1752	-0.015 ± 0.005
40 M	4	0.656 ± 0.100	0.066	0.9776	-0.074	43	
		0.532 ± 0.012	0.006	0.9999	-0.001	2688	-0.037 ± 0.002
10 E	11^{f}	0.525 ± 0.013	0.018	0.9974	-0.027	1728	
		0.507 ± 0.007	0.009	0.9994	-0.014	3227	-0.019 ± 0.004
50 E	12^{g}	0.766 ± 0.046	0.067	0.9826	-0.078	280	
		0.683 ± 0.010	0.013	0.9994	-0.017	3823	-0.055 ± 0.003

Table V
(Continued)

Solvent	n	$\varrho \pm s_{e}$	s	R	int.	F	$h_{m} \pm s_{h}$
75 E	12^{g}	0.862 ± 0.029	0.042	0.9944	-0.046	884	
		0.813 ± 0.015	0.019	0.9990	-0.010	2231	-0.032 ± 0.005
85 E	5	0.904 ± 0.014	0.018	0.9997	-0.024	4349	
		0.880 ± 0.005	0.005	1.0000	-0.003	29360	-0.011 ± 0.002
32TB	12	0.856 ± 0.130	0.190	0.9010	-0.242	43	
		0.617 ± 0.026	0.033	0.9974	-0.067	864	-0.157 ± 0.009
32TB	8^{h}	0.925 ± 0.347	0.217	0.7367	-0.287	7	
		0.599 ± 0.045	0.026	0.9972	-0.081	445	-0.152 ± 0.008
32TB	4^{i}	0.679 ± 0.065	0.067	0.9922	-0.057	126	
		0.469 ± 0.049	0.020	0.9997	-0.006	720	-0.392 ± 0.084
80MCS	4	0.906 ± 0.062	0.042	0.9954	-0.046	216	
		0.824 ± 0.008	0.004	1.0000	-0.002	11360	-0.024 ± 0.002
30DMSO	4	0.696 ± 0.098	0.067	0.9806	-0.072	50	
		0.565 ± 0.008	0.004	1.0000	-0.002	6944	-0.038 ± 0.002

$\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathbf{C O O H}$

$\mathrm{H}_{2} \mathrm{O}$	5^{j}	0.209 ± 0.008	0.006	0.9978	-0.006	686	
		0.204 ± 0.011	0.006	0.9983	-0.003	298	-0.005 ± 0.007
50 E	6^{k}	0.407 ± 0.063	0.049	0.9547	-0.047	41	
		0.327 ± 0.010	0.007	0.9994	-0.003	1231	-0.034 ± 0.002
75 E	6^{k}	0.451 ± 0.013	0.010	0.9983	-0.006	1178	
		0.438 ± 0.011	0.007	0.9993	0.001	1095	-0.005 ± 0.003
32 TB	6	0.494 ± 0.135	0.104	0.8771	-0.130	13	
		0.327 ± 0.048	0.031	0.9923	-0.039	96	-0.070 ± 0.011

trans- $\mathrm{ArCH}=\mathbf{C H C O O H}$

$\mathrm{H}_{2} \mathrm{O}$	4^{l}	0.417 ± 0.034	0.021	0.9935	0.008	153	
		0.408 ± 0.049	0.027	0.9945	0.015	45	-0.016 ± 0.038
50E	6^{k}	0.734 ± 0.032	0.025	0.9962	0.002	518	
		0.701 ± 0.025	0.016	0.9987	0.021	593	-0.014 ± 0.006
75E	6^{k}	0.726 ± 0.024	0.018	0.9979	-0.008	951	
		0.700 ± 0.014	0.009	0.9996	0.006	1843	-0.011 ± 0.003
32 TB	6	0.896 ± 0.136	0. 104	0.9570	-0.116	44	
		0.727 ± 0.042	0.027	0.9979	-0.024	349	-0.071 ± 0.009
			cis-Ar	$=\mathrm{CHC}$			
$\mathrm{H}_{2} \mathrm{O}$	4^{l}	0.397 ± 0.037	0.023	0.9914	0.019	115	
		0.422 ± 0.006	0.003	0.9999	0.002	3012	-0.045 ± 0.004

[^5]Table V
(Continued)

Solvent	n	$\varrho \pm s_{\Omega}$	s	R	int.	F	$h_{m} \pm s_{h}$
40M	3	$\begin{aligned} & 0.706 \pm 0.212 \\ & 0.513 \end{aligned}$	$0 \cdot 137$	0.9577	-0.104	11	-0.055
50E	4^{k}	$\begin{aligned} & 0.895 \pm 0.158 \\ & 0.691 \pm 0.048 \end{aligned}$	$\begin{aligned} & 0 \cdot 105 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.9702 \\ & 0.9993 \end{aligned}$	$\begin{array}{r} -0.108 \\ 0.004 \end{array}$	$\begin{array}{r} 32 \\ 335 \end{array}$	-0.059 ± 0.010
75E	4^{k}	$\begin{aligned} & 0.811 \pm 0.136 \\ & 0.636 \pm 0.038 \end{aligned}$	$\begin{aligned} & 0.090 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.9731 \\ & 0.9994 \end{aligned}$	$\begin{array}{r} --0.094 \\ 0.003 \end{array}$	$\begin{array}{r} 36 \\ 444 \end{array}$	-0.051 ± 0.007
32TB	4	$\begin{aligned} & 1.065 \pm 0.466 \\ & 0.458 \pm 0.028 \end{aligned}$	$\begin{aligned} & 0.309 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.8506 \\ & 0.9999 \end{aligned}$	$\begin{array}{r} -0.334 \\ 0.002 \end{array}$	$\begin{array}{r} 5 \\ 1811 \end{array}$	-0.176 ± 0.006
$\mathrm{ArCOOH}+\mathrm{DDM}$							
75E	4	$\begin{aligned} & 0.950 \pm 0.058 \\ & 0.883 \pm 0.052 \end{aligned}$	$\begin{aligned} & 0.038 \\ & 0.025 \end{aligned}$	$\begin{aligned} & 0.9963 \\ & 0.9992 \end{aligned}$	$\begin{aligned} & -0.041 \\ & -0.004 \end{aligned}$	$\begin{aligned} & 270 \\ & 314 \end{aligned}$	-0.019 ± 0.010
32TB	4	$\begin{aligned} 1.265 & \pm 0.254 \\ 0.934 & \pm 0.001 \end{aligned}$	$\begin{aligned} & 0 \cdot 168 \\ & 0 \cdot 000 \end{aligned}$	$\begin{aligned} & 0.9621 \\ & 1.0000 \end{aligned}$	$\begin{array}{r} -0.183 \\ 0.000 \end{array}$	25	-0.096 ± 0.000
50TB	3	$\begin{aligned} & 1.224 \pm 0.242 \\ & 1.003 \end{aligned}$	$0 \cdot 156$	0.9809	-0.119	25	-0.063
$\mathrm{ArCOOMe}+\mathrm{OH}^{-}$							
$\begin{aligned} & 56 \% A \\ & (\mathrm{w} / \mathrm{w}) \end{aligned}$	5	$\begin{aligned} & 2 \cdot 251 \pm 0 \cdot 135 \\ & 2 \cdot 210 \pm 0.045 \end{aligned}$	$\begin{aligned} & 0.086 \\ & 0.028 \end{aligned}$	$\begin{aligned} & 0.9946 \\ & 0.9996 \end{aligned}$	$\begin{aligned} & -0.081 \\ & -0.014 \end{aligned}$	$\begin{array}{r} 277 \\ 1316 \end{array}$	-0.125 ± 0.024
$\begin{aligned} & 56 \% A \\ & (\mathrm{w} / \mathrm{w}) \end{aligned}$	6	$\begin{aligned} & 2 \cdot 393 \pm 0.109 \\ & 2 \cdot 242 \pm 0.052 \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.031 \end{aligned}$	$\begin{aligned} & 0.9959 \\ & 0.9996 \end{aligned}$	$\begin{aligned} & -0.100 \\ & -0.008 \end{aligned}$	$\begin{array}{r} 481 \\ 1673 \end{array}$	-0.106 ± 0.021
32TB	5	$\begin{aligned} & 2.789 \pm 0.509 \\ & 1.939 \pm 0.123 \end{aligned}$	$\begin{aligned} & 0.365 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 0.9535 \\ & 0.9991 \end{aligned}$	$\begin{aligned} & -0.506 \\ & -0.037 \end{aligned}$	$\begin{array}{r} 30 \\ 551 \end{array}$	-0.252 ± 0.025

${ }^{a}$ Sets of data are in pairs, the upper gives results with Eq. (1), the lower results with the same data points with Eq. (3) and thus includes a value of h and its standard deviation, s_{Q} standard deviation of ϱ, s standard deviation of the experimental points, int. intercept, $F F$ test, if not noted otherwise the data used can be identified as the first n data (including H) in Tables I-IV; values of σ_{m} and π, respectively, used in the regressions: $\mathrm{Me}-0.069,0.56, \mathrm{t}-\mathrm{Bu}-0.07,1.98$, $\mathrm{CH}_{2} \mathrm{OH} 0.07,-1.03$, $\mathrm{COMe} 0.376,-0.55, \mathrm{NO}_{2} 0.710,-0.28$, OMe $0.12,-0.02, \mathrm{~F} 0.337,0.14$, $\mathrm{Cl} 0: 373,0.71$, $\mathrm{Br} 0.391,0.86$, I 0.352 , $1 \cdot 12$, diMe $-0.13,1.07$, di-t-Bu $-0.14,3.96, \mathrm{diNO}_{2} 1.379$, -0.64 , (σ as in ref. $.^{1}, \pi$ from ref. ${ }^{2}$); ${ }^{b}$ ref. ${ }^{1} ;{ }^{c}$ as for $n=24$, but $3,5-\mathrm{di}-\mathrm{tBu}$ and $3,5-\mathrm{diNO}_{2}$ omitted, showing that extreme values of π and σ do not unduly dominate the results; ${ }^{d} 3-\mathrm{OH}$ omitted, $\left(\right.$ ref. ${ }^{47}$); ${ }^{e} \mathrm{H}, \mathrm{Me}, \mathrm{NO}_{2}, \mathrm{Cl}, \mathrm{I}\left(\right.$ ref. ${ }^{48}$); ${ }^{f} \mathrm{H}, \mathrm{Me}, \operatorname{diMe}, \mathrm{NO}_{2}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}\left(\right.$ ref. ${ }^{6}$), $\mathrm{t}-\mathrm{Bu}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{I}$, diNO_{2} (present work); ${ }^{\boldsymbol{g}}$ as for 10E, 3,5 -di-tBu added; ${ }^{h}$,,outside" (cf. ref. ${ }^{1}$), $0.27<\pi<-0.73$; ${ }^{i}$,,inside" (cf. ref. ${ }^{1}$), $0.27>\pi>-0.73 ;{ }^{j}$ ref. ${ }^{49}$, $3-\mathrm{NO}_{2} \Delta 0.14$ (ref. ${ }^{7}$), 3,5 -diMe $\Delta-0.04$ (present work); ${ }^{k}$ as for 32 TB , Table III; ${ }^{l}$ ref. ${ }^{4}$.

Two approaches can be considered to accommodate these problems. The first is to derive new (secondary) σ values only from systems that follow Eq. (1) very closely. This amounts to accepting a further practical restriction of the Hammett equation (I) in addition to those imposed by charged groups, through-resonance, etc., and implies ignoring an enormous amount of data from mixed solvents.

The second approach is to use the data from Eq. (3) - which are based on substituent effects in water - to calculate new pseudo-aqueous secondary σ values, $\sigma^{\text {s }}$, by working backwards, i.e., by using Eq. (6). As a numerical

$$
\begin{equation*}
\sigma^{s}=(\Delta-h \pi) / \varrho \tag{6}
\end{equation*}
$$

example may serve $\sigma^{\mathrm{s}}-4-\mathrm{t}-\mathrm{Bu}$ as derived from the $\mathrm{ArCH}_{2} \mathrm{COOH}$ series $\left(\sigma^{\mathrm{n}}\right.$ or $\left.\sigma^{0}\right)$; the averages for all seven solvents are $\Delta / \varrho-0.21 \pm 0.12$ and $\sigma^{\mathrm{s}}-0.06 \pm 0.03$: deleting the data in 32 TB the averages are $\Delta / \varrho-0.14 \pm 0.04$ and $\sigma^{s}-0.05 . \pm 0.02$. Not surprisingly, these σ^{s} values are less negative than the normal σ values listed by Wold ${ }^{9},-0 \cdot 15$, by Exner ${ }^{12},-0 \cdot 17$, and by ourselves ${ }^{6},-0 \cdot 14$. For $4-\mathrm{Me}$ the averages of the seven values, -0.15 ± 0.04 and -0.11 ± 0.02, respectively, are much closer together, as expected on the basis of its small π value $(0 \cdot 56)$.

CONCLUDING REMARKS

It is clear from this and the previous paper ${ }^{1}$ that Eq. (3) gives a great improvement over Eq. (1). In a sense the Hammett structure/effect proportionalities hold better than the results with the Hammett equation (1) suggest: the deviations described by $h \pi$ terms stem primarily from the peculiarities of the solvent mixtures ${ }^{1}$.

Table VI
Reaction constants h_{m} for reactivities of substituted benzoic, phenylacetic, phenylpropionic and cinnamic acids in 32 TB , at $25^{\circ} \mathrm{C}$

Reaction	h_{m}
	$\mathrm{ArCOOMe}+\mathrm{OH}^{-}$
$\mathrm{ArCH}=\mathrm{CHCOOH}($ cis $)$	-0.25
ArCOOH	$-0 \cdot 18$
$\mathrm{ArCH}_{2} \mathrm{COOH}$	$-0 \cdot 16$
$\mathrm{ArCOOH}+\mathrm{DDM}$	$-0 \cdot 16$
$\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	$-0 \cdot 10$
$\mathrm{ArCH}=\mathbf{C H C O O H}($ trans $)$	-0.07
	-0.07

It should not go unnoticed, however, that the data also show irregularities which are not covered by Eq. (3). We restrict ourselves to a few examples of various character concerning OR groups.

In our previous paper ${ }^{1}$ we noted already that in the ArCOOH series $3-\mathrm{OH}$ did not behave well. We here give some of these and related data:

| Δ-3-OH: | $\mathrm{H}_{2} \mathrm{O} 0.07,50 \mathrm{E} 0 \cdot 03,85 \mathrm{E}$ | $-0.06,32 \mathrm{~TB}$ | 0.06 |
| :--- | :--- | ---: | ---: | ---: |
| Δ-3-OMe: | $\mathrm{H}_{2} \mathrm{O} 0 \cdot 12,50 \mathrm{E} 0 \cdot 11,85 \mathrm{E}$ | $0.08,32 \mathrm{~TB}$ | 0.10 |
| Δ-3-OEt: | $\mathrm{H}_{2} \mathrm{O} 0 \cdot 10,50 \mathrm{E} 0 \cdot 07,85 \mathrm{E}$ | $0.05,32 \mathrm{~TB}$ | 0.00 |
| Δ-3-OPh: | $\mathrm{H}_{2} \mathrm{O} 0.25,50 \mathrm{E} 0 \cdot 16,85 \mathrm{E}$ | $0 \cdot 22,32 \mathrm{~TB}$ | -0.13 |

The irregularity in these examples is that Δ does not follow the increase of ϱ from $\mathrm{H}_{2} \mathrm{O}-85 \mathrm{E}$. On the other hand the change in Δ from 50 E to 32 TB follows $h \pi$, increasing for $\mathrm{OH}(\pi-0.67)$, decreasing for $\mathrm{OEt}(\pi+0.38)$, and decreasing strongly for OPh ($\pi 2 \cdot 08$). This possibly means that the anomaly in question increases or decreases from water to 50 E and then remains constant. Accordingly, Dippy's ${ }^{13}$ value for $3-\mathrm{OPh}$ in water, 0.25 , is not incompatible with our data which give σ^{s} 0.15 ± 0.01 ($n 4$).

For 4-OPh in the $\mathrm{ArCH}_{2} \mathrm{COOH}$ series the situation is not clear. The values of Δ in $10 \mathrm{E}, 50 \mathrm{E}$ and $75 \mathrm{E}, 0.00,0.03$ and 0.04 , respectively, do not reflect the $h \pi$ term of 0.11 pK units to be expected in 50 E , and the corresponding σ^{s} values $0.08,0.20$ and $0 \cdot 14$ are too far apart. Of course, these calculated values are rather uncertain because π is high and ϱ values are low.

More conclusive are the results with $\mathrm{ArCOOH} ; \Delta-4-\mathrm{OPh}$ in $50 \mathrm{E}, 75 \mathrm{E}$ and 32 TB : $-0.02,-0.02$ and -0.27 , respectively, yield $\sigma^{s} 0.06,0.01$ and 0.04 , average $0.04 \pm$ $0 \cdot 02$. This average is rather different from the σ value listed by Exner ${ }^{12}, 0 \cdot 14$, and the value in water obtained by Dippy and Lewis ${ }^{13},-0 \cdot 320$. The difference with Exner's value, which was based on "the values of Wepster" ${ }^{14}$, can be accounted for with unusual certainty as based on a misunderstanding; the pK of $4-\mathrm{OPh}$-benzoic acid (and of the 3-OPh isomer) in " 50 E " is quoted correctly and appears in the present paper, but, due to incomplete information on our part, it was not made clear that it is a thermodynamic value which should not be compared with an apparent pK of benzoic acid (5.72 instead of our $5 \cdot 48$). As to Dippy's $-0 \cdot 320$, this was footnoted by Exner ${ }^{15}$ as "unaccountable". We agree with this mild judgement.

EXPERIMENTAL

Materials

Most of the compounds and procedures have been characterized or described in references ${ }^{1,3,4,}$ 6,7,16; we give some further data here (substituent, m.p. or b.p., solvent of crystallization).

Benzoic Acids

$3-\mathrm{MeC}=\mathrm{CMe}_{2}, 101 \cdot 5-102 \cdot 5^{\circ} \mathrm{C}$ (see ref. ${ }^{17}$); $3-\mathrm{CH}_{2} \mathrm{SiMe}_{3}, 96 \cdot 5-97^{\circ} \mathrm{C}$, petroleum ether 60 to $80^{\circ} \mathrm{C}$ (see ref. ${ }^{18}$); 3-CO-t-Bu, $110 \cdot 5-111 \cdot 5^{\circ} \mathrm{C}$, aq. methanol (see ref. ${ }^{3}$); 3- $\mathrm{NH}_{2}, 173-174 \cdot 5^{\circ} \mathrm{C}$, water; 3-NMe ${ }_{2}, 151 \cdot 5-153^{\circ} \mathrm{C}$, ethanol; 3- $\mathrm{NHCONH}_{2}, 270-272^{\circ} \mathrm{C}$ (dec.), ethanol (ref. ${ }^{19}$), $3-\mathrm{O}$-octyl, $74-75^{\circ} \mathrm{C}$, aq. ethanol; from 3-hydroxybenzoic acid and octyl bromide (cf. ref. ${ }^{20}$); 4-t-pent, $107-108 \cdot 5^{\circ} \mathrm{C}$, aq. ethanol (ref. ${ }^{21}$); 4-heptyl, $101-102^{\circ} \mathrm{C}$, methanol (Kon. Shell, Amsterdam); 4-cyclohexyl, 198-199.5 ${ }^{\circ} \mathrm{C}$, ethanol (ref. ${ }^{22}$); 4-bicyclo[2.2.2]octan-1-yl, 258-260 ${ }^{\circ} \mathrm{C}$, ethanol (ref. ${ }^{23}$); 4-benzyl, $159-160^{\circ} \mathrm{C}$, aq. ethanol (ref. ${ }^{24}$); 4-vinyl, $140^{\circ} \mathrm{C}$ (Kofler Heizbank), 30% ethanol (E. S. Waight, London); 4-MeC= $=\mathrm{CMe}_{2}, 101 \cdot 5-102 \cdot 5^{\circ} \mathrm{C}$ (see ref. ${ }^{17}$); 4-Ph, 227 to $228^{\circ} \mathrm{C}$, ethanol; by oxidation of 4-acetobiphenyl with potassium permanganate in aqueous pyridine (see refs ${ }^{25,26}$); $4-\mathrm{CH}_{2} \mathrm{SiMe}_{3}, 179-180^{\circ} \mathrm{C}$, petroleum ether $60-80^{\circ} \mathrm{C}$ (see ref. ${ }^{\mathbf{1 8}}$); 4-CO-t-Bu, 164 to $165^{\circ} \mathrm{C}$, aq. ethanol; by oxidation of 4 -methyl pivalophenone (cf. ref. ${ }^{26}$); $4-\mathrm{COOMe}, 221 \cdot 5$ to $223^{\circ} \mathrm{C}$, acetone (cf. ref. ${ }^{27}$); $4-\mathrm{NHNH}_{2} . \mathrm{HCl}, 239-240^{\circ} \mathrm{C}, 2 \mathrm{~m}-\mathrm{HCl}\left(\right.$ ref. 28); 4-NHFo, $259-260^{\circ} \mathrm{C}$, ethanol; 4-NHAc, $257-259^{\circ} \mathrm{C}$, methanol; 4-NEt ${ }_{2}, 193 \cdot 5-195^{\circ} \mathrm{C}$ (ref. ${ }^{29}$); 4-pyrrolidin-1-yl, $285-288^{\circ} \mathrm{C}$, ethanol (see ret..29); 4-piperidin-1-yl, $225-226 \cdot 5^{\circ} \mathrm{C}$, ethanol (see ref. ${ }^{29}$); 4-N=NPh, $248-249 \cdot 5^{\circ} \mathrm{C}$, ethanol (ref. ${ }^{30}$); 4-OH, $216-217 \cdot 5^{\circ} \mathrm{C}$, water; $4-\mathrm{OEt}, 199 \cdot 5-201^{\circ} \mathrm{C}$, ethanol; $4-\mathrm{OPh}, 159-160^{\circ} \mathrm{C}$, ethanol; by bromination of diphenyl ether, followed by a Grignard reaction in the presence of ethyl bromide (cf. ref. ${ }^{31}$); $4-\mathrm{SO}_{2} \mathrm{Me}, 274-275 \cdot 5^{\circ} \mathrm{C}$, water; $3,5-\mathrm{diEt}, 129-130^{\circ} \mathrm{C}$, petroleum ether; from 3,5-diethyl-4-bromobenzene ${ }^{32}$ by a Grignard reaction; 3,5-di-iPr, 100 to $100 \cdot 5^{\circ} \mathrm{C}$, aq. methanol; by oxidation of $1,3,5$-tri-isopropylbenzene (cf. ref. ${ }^{33}$); 3,5-diOMe, 184 to $185^{\circ} \mathrm{C}$, ethanol; $3,5-\mathrm{diBr}, 220-221^{\circ} \mathrm{C}$, aq. ethanol (ref. ${ }^{34}$); $3,5-\mathrm{diSiMe}_{3}, 171 \cdot 5-172^{\circ} \mathrm{C}\left(\mathrm{ref.}^{35}\right.$).

Arylacetic Acids

3-Hydroxymethylphenylacetic acid, $95-96^{\circ} \mathrm{C}$, ether-petroleum ether; by bromination of 3-methylphenylacetic acid with bromosuccinimide ${ }^{36}$ followed by alkaline hydrolysis.

Methyl Benzoates

3-Me, $114-115^{\circ} \mathrm{C} / 26 \mathrm{~mm} ; 3-\mathrm{t}-\mathrm{Bu}, 121-123^{\circ} \mathrm{C} / 12 \mathrm{~mm} ; 3,5-\mathrm{diMe}, 32-33^{\circ} \mathrm{C}$, petroleum ether $40-60^{\circ} \mathrm{C}$. Further data in refs ${ }^{4,26}$.

Solvents
Methanol, dry, Baker Analyzed; acetone, Baker Analyzed, distilled; dioxane: CR Merck (Chromatography), dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, refluxed for 2 h with $\mathrm{SnCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ to remove peroxides, and distilled under N_{2}.

Properties of the mixtures with water are as follows (mole $\%$, wt. $\%, d_{25}^{25}, D_{\mathrm{s}}, \delta R^{1}$): $40 \mathrm{M}: 22 \cdot 1$, $33 \cdot 5,0.940,63 \cdot 9,0.01 ; 60 \mathrm{M}: 38 \cdot 0,52 \cdot 1,0.906,55 \cdot 2,0.04 ; 80 \mathrm{M}: 60 \cdot 7,73 \cdot 3,0.858,45 \cdot 5,-0.09$; 10A: $2.62,7.98,0.984,74 \cdot 1,-0.02$; 50A: $18.5,42 \cdot 3,0.928,53.2,-0.13 ; 56 \%$ A w/w: $28.3,56 \cdot 0$, $-, 44 \cdot 4,-; 26 \cdot 5 \% \mathrm{D}$ w/w: 6.87, $26 \cdot 5,-, 56 \cdot 2,-; 43 \cdot 5 \% \mathrm{D}$ w/w: $13 \cdot 6,43 \cdot 5,-, 43 \cdot 1,-; 73 \cdot 5 \% \mathrm{D}$ w/w: $36 \cdot 2,73 \cdot 5,-, 16 \cdot 8,-$; 50D: $16 \cdot 9,49 \cdot 9,1 \cdot 030,36 \cdot 0,-0 \cdot 08$.

Dielectric constants, D_{s}, at $25^{\circ} \mathrm{C}: \mathrm{M} / \mathrm{H}_{2} \mathrm{O}$, see ref. ${ }^{37} ; \mathrm{A} / \mathrm{H}_{2} \mathrm{O}$, see ref. ${ }^{38} ; \mathrm{D} / \mathrm{H}_{2} \mathrm{O}$, see ref. ${ }^{39}$. Values of $\mathrm{p} K_{\mathrm{w}}$, in $10 \mathrm{~A} 14 \cdot 23$, 50A $15 \cdot 46$, and $50 \mathrm{D} 15 \cdot 53$, from data in ref. ${ }^{40}$.

Methods

$\mathrm{p} K$ Values: the thermodynamic dissociation constants have been determined as described and exemplified previously ${ }^{1,7,16}$.

Reaction with diazodiphenylmethane ($D D M$). The general procedures of Roberts et al. ${ }^{42}$ were adopted: 0.003 m -DDM, prepared according to ref. ${ }^{41}$, ratio acid/DDM circa 10 , cell length 5 or 10 cm , wavelength 525 nm . Stock solutions were brought at such a temperature that after mixing the temperature was $25^{\circ} \mathrm{C}$. First-order kinetics were strictly obeyed. Small corrections were applied, where necessary, for oxonium ion-catalysis (the magnitude of which was determined with solutions of hydrochloric acid). In order to keep these corrections small (of the order of 1%) some acid solutions were partly neutralized ${ }^{42}$. The percentage of ester formation in 75 E was determined for ArCOOH (and $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathbf{C O O H}$) as $37 \pm 2 \%$ for several substituents ${ }^{\mathbf{4 3}}$; our k values are not corrected for this figure ${ }^{43}$.

Alkaline ester hydrolysis. In 56% acetone-water (w/w) the procedure of Tommila and Hinshelwood ${ }^{44}$ was used (ester and sodium hydroxide 0.01 m). In 32 TB the reaction was followed spectrophotometrically at suitable wavelengths between 225 and $240 \mathrm{~nm}\left(\mathrm{c} .10^{-4} \mathrm{M}\right.$ ester, 0.01 m sodium hydroxide). Stock solutions were brought at such a temperature that after mixing the temperature was $25^{\circ} \mathrm{C}$.

We gratefully acknowledge the gift of benzoic acids by T. J. Broxton, C. Eaborn, M. J. Janssen, A. P. G. Kieboom, Koninklijke/Shell, F.O. J. van der Meulen Bosma and E. S. Waight, as indicated in Experimental.

REFERENCES

1. Hoefnagel A. J., Wepster B. M.: J. Chem. Soc., Perkin Trans. 2, 1989, 977.
2. Hansch C., Leo A.: Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley-Interscience, New York 1979; Hansch C., Leo A., Unger S. H., Kim K. H., Nikaitani D., Lien E. J.: J. Med. Chem. 16, 1207 (1973); Leo A.: J. Chem. Soc., Perkin Trans. 2, 1983, 825.
3. Reuvers A. J. M., van Bekkum H., Wepster B. M.: Tetrahedron 26, 2683 (1970).
4. Hoefnagel A. J., Hoefnagel M. A., Wepster B. M.: J. Org. Chem. 43, 4720 (1978).
5. van de Graaf B., Hoefnagel A. J., Wepster B. M.: J. Org. Chem. 46, 653 (1981).
6. Hoefnagel A. J., Wepster B. M.: J. Am. Chem. Soc. 95, 5357 (1973).
7. Hoefnagel A. J., Monshouwer J. C., Snorn E. C. G., Wepster B. M.: J. Am. Chem. Soc. 95, 5350 (1973).
8. Exner O. in: Advances in Linear Free Energy Relationships (N. B. Chapman and J. Shorter, Eds), p. 1. Plenum Press, London 1972.
9. Wold S., Sjöström M. in: Correlation Analysis in Chemistry (N. B. Chapman and J. Shorter, Eds), p. 1. Plenum Press, New York 1978; Sjöström M., Wold S.: Chem. Scr. 9, 200 (1976).
10. Eaborn C., Parker S. H.: J. Chem. Soc. 1954, 939.
11. Bowden K., Shaw M. J.: J. Chem. Soc., B 1971, 161.
12. Exner O. in: Correlation Analysis in Chemistry (N. B. Chapman and J. Shorter, Eds), p. 439. Plenum Press, New York 1978.
13. Dippy J. F. J., Lewis R. H.: J. Chem. Soc. 1937, 1426.
14. Exner O., Lakomý J.: Collect. Czech. Chem. Commun. 35, 1371 (1970).
15. Exner O.: Collect. Czech. Chem. Commun. 31, 65 (1966).
16. van Veen A., Hoefnagel A. J., Wepster B. M.: Rec. Trav. Chim. Pays-Bas 90, 289 (1971).
17. Kieboom A. P. G., van Bekhum H.: J. Catal. 25, 342 (1972).
18. Eaborn C., Parker S. H.: J. Chem. Soc. 1954, 939.
19. Menshuskin N.: Justus Liebigs Ann. Chem. 153, 83 (1870).
20. Herbert A. J.: Trans. Faraday Soc. 63, 555 (1967).
21. Cagniant P., Buu-Hoi: Bull. Soc. Chim. Fr. [5] 9, 841 (1942).
22. Bodroux D., Thomassin R.: Bull. Soc. Chim. Fr. [5] 6, 1411 (1939).
23. Broxton T. J., Capper G., Deady L. W., Lenko A., Topsom R. D.: J. Chem. Soc., Perkin Trans. 2, 1972, 1237.
24. Mitter P.: Ber. Dtsch. Chem. Ges. 45, 1207 (1912).
25. Hammond G. S., Reeder C. E.: J. Am. Chem. Soc. 80, 573 (1958).
26. van Hartingsveldt W., Verkade P. E., Wepster B. M.: Rec. Trav. Chim. Pays-Bas 75, 349 (1956).
27. Wohl A., Nagelschmidt E.: Ber. Dtsch. Chem. Ges. 43, 3474, 3477 (1910).
28. Fischer E.: Justus Liebigs Ann. Chem. 212, 316, 337 (1882).
29. Weringa W. D., Janssen M. J.: Rec. Trav. Chim. Pays-Bas 87, 1372 (1968).
30. Anspon H. D.: Org. Synth., Coll. Vol. III, p. 711. Wiley, New York 1955.
31. Bowen D. M.: Org. Synth., Coll. Vol. III, p. 553. Wiley, New York 1955.
32. Benkeser R. A., Hickner R. A., Hoke D. I., Thomas O. H.: J. Am. Chem. Soc. 80, 5289 (1958).
33. van Helden R., Bickel A. F., Kooyman E. C.: Rec. Trav. Chim. Pays-Bas 80, 1257 (1961).
34. Elion L.: Rec. Trav. Chim. Pays-Bas 42, 145 (1923).
35. van der Meulen Bosma F. O. J.: Unpublished results.
36. Kalir A.: Org. Synth., Coll. Vol. V, p. 825. Wiley, New York 1973.
37. Albright P. S., Gosting L. J.: J. Am. Chem. Soc. 68, 1061 (1946).
38. Åkerlöf G.: J. Am. Chem. Soc. 54, 4125 (1932).
39. Critchfield F. E., Gibson, Jr. J. A., Hall J. L.: J. Am. Chem. Soc. 75, 1991 (1953).
40. Woolley E. M., Hurkot D. G., Hepler L. G.: J. Phys. Chem. 74, 3908 (1970).
41. Smith L. I., Howard K. L.: Org. Synth., Coll. Vol. III, p. 351. Wiley, New York 1955.
42. Roberts J. D., McElhill E. A., Armstrong R.: J. Am. Chem. Soc. 71, 2923 (1949); Roberts J. D., Watanabe W., McMahon R. E.: J. Am. Chem. Soc. 73, 760 (1951).
43. Buckley A., Chapman N. B., Shorter J.: J. Chem. Soc. 1963, 178; J. Chem. Soc., B 1969, 195; and papers cited therein.
44. Tommila E., Hinshelwood C. N.: J. Chem. Soc. 1938, 1801; Tommila E.: Ann. Acad. Sci. Fenn. Ser. A, No. 13, 1 (1941).
45. Tommila E., Brehmer L., Elo H.: Ann. Acad. Sci. Fenn., Ser. A, LIX (No. 9), 1 (1942); AII, 16, 1 (1945).
46. Hoefnagel M. A.: Unpublished results.
47. Elliott J. H., Kilpatrick M.: J. Phys. Chem. 45, 485 (1941).
48. Dippy J. F. J.: Chem. Rev. 25, 151 (1939); Dippy J. F. J., Hughes S. R. C., Kitchiner B. C.: J. Chem. Soc. 1964, 1275.
49. Dippy J. F. J., Page J. E.: J. Chem. Soc. 1938, 357.

[^0]: * Part XII in the series Substituent Effects; Part XI: J. Chem. Soc., Perkin Trans. 2, 1989, 977.

[^1]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

[^2]: * π-Values used in the regressions are given in Table V . We quote here some further values ${ }^{2}$ of groups appearing in this paper: n -Hept 3.8 (by extrapolation of $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$), neoPent 2.6 (est.), t-Pent 2.6 (est.), cycloHex $2.51, \mathrm{CH}_{2} \mathrm{Ph} 2.01, \mathrm{CH}=\mathrm{CH}_{2} 0.82, \mathrm{Ph} 1.96, \mathrm{CH}_{2} \mathrm{SiMe}_{3} 2.00$, $\mathrm{SiMe}_{3} 2.59 . \mathrm{NEt}_{2} 1.18$, $^{2} \mathrm{NHNH}_{2}-0.88$, NHFo -0.98 , NHAc -0.97 , $\mathrm{NHCONH}_{2}-1 \cdot 30$, $\mathrm{N}=\mathrm{NPh} 1 \cdot 69$, O-Octyl 3.6 (est. $\mathrm{OC}_{1}-\mathrm{OC}_{4}$), OPh 2.08, meta-diCl 1.25, meta-diBr 1.62.

[^3]: a $32 \mathrm{~TB} ;{ }^{b} 40 \mathrm{M}$.

[^4]: * The correlation has (relative) $Q 0.848 \pm 0.020, s 0 \cdot 014, R 0.9991$, int. $-0.027, F 1641$. The equation $\Delta(32 \mathrm{~TB})=\varrho \Delta(50 \mathrm{E})$ gives $s 0.094, R 0.945$.
 ** $\quad \sigma_{m}$ Values between $0.17-0.33$ and $0.44-0.70$ are rare.

[^5]: Collect. Czech. Chem. Commun. (Vol. 55) (1990)

